f08 — Least-squares and FEigenvalue Problems (LAPACK) f08kgc

1

NAG C Library Function Document
nag_dormbr (f08kgc)

Purpose

nag_dormbr (f08kgc) multiplies an arbitrary real matrix C' by one of the real orthogonal matrices () or P
which were determined by nag_dgebrd (f08kec) when reducing a real matrix to bidiagonal form.

2

Specification

void nag_dormbr (Nag_OrderType order, Nag_VectType vect, Nag_SideType side,

3

Nag_TransType trans, Integer m, Integer n, Integer k, const double a[],
Integer pda, const double tau[], double c[], Integer pdc, NagError *fail)

Description

nag_dormbr (f08kgc) is intended to be used after a call to nag dgebrd (f08kec), which reduces a real

rectangular matrix A to bidiagonal form B by an orthogonal transformation: A = QBP’. nag dgebrd
(fO8kec) represents the matrices () and PT as products of elementary reflectors.

This function may be used to form one of the matrix products

QC, Q'c, cq, cQt, pc, Ptc, cP or CPT,

overwriting the result on C' (which may be any real rectangular matrix).

4

References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5

Parameters

Note: in the descriptions below, r denotes the order of @ or P if side = Nag_LeftSide, » = m and if
side = Nag_RightSide, » = n.

1:

order — Nag OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order = Nag_RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order = Nag_RowMajor or Nag_ColMajor.

vect — Nag VectType Input
On entry: indicates whether Q or Q7 or P or P is to be applied to C' as follows:
if vect = Nag_ApplyQ, Q or Q" is applied to C;
if vect = Nag_ApplyP, P or Pl is applied to C.
Constraint: vect = Nag_ApplyQ or Nag_ApplyP.
side — Nag_SideType Input

On entry: indicates how Q or Q7 or P or P is to be applied to C as follows:

[NP3645/7] f08kge. 1

fO8kgce NAG C Library Manual

if side = Nag_LeftSide, Q or Q” or P or P” is applied to C from the left;

if side = Nag_RightSide, Q or Q" or P or P’ is applied to C' from the right.
Constraint: side = Nag_LeftSide or Nag_RightSide.

4: trans — Nag TransType Input

On entry: indicates whether Q or P or Q7 or P” is to be applied to C' as follows:
if trans = Nag NoTrans, () or P is applied to C;

if trans = Nag_Trans, Q" or P’ is applied to C.

Constraint. trans = Nag NoTrans or Nag Trans.

5: m — Integer Input
On entry: m¢, the number of rows of the matrix C.

Constraint: m > 0.

6: n — Integer Input
On entry: ng, the number of columns of the matrix C.

Constraint: n > 0.

7: k — Integer Input

On entry: if vect = Nag ApplyQ, the number of columns in the original matrix A; if
vect = Nag_ApplyP, the number of rows in the original matrix A.

Constraint: k > 0.

8: a[dim] — double Input/Output

Note: the dimension, dim, of the array a must be at least
max(1, pda x max(1, min(r,k))) when vect = Nag_ApplyQ and order = Nag_ColMajor;
max(1,pda x r) when vect = Nag ApplyQ and order = Nag RowMajor;
max(1,pda x r) when vect = Nag ApplyP and order = Nag_ColMajor;
max(1,pda x min(r, k))) when vect = Nag ApplyP and order = Nag_ RowMajor.

If order = Nag_ColMajor, the (7, j)th element of the matrix A is stored in a[(j — 1) x pda + i — 1] and
if order = Nag_RowMajor, the (i, j)th element of the matrix A is stored in a[(i — 1) x pda+ j — 1].

On entry: details of the vectors which define the elementary reflectors, as returned by nag dgebrd
(f08kec).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda — Integer Input
On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.
Constraints:

if order = Nag_ColMajor,
if vect = Nag_ApplyQ, pda > max(1,7);
if vect = Nag_ApplyP, pda > max(1, min(r, k));

if order = Nag_RowMajor,
if vect = Nag_ApplyQ, pda > max(1, min(r,k));
if vect = Nag_ApplyP, pda > max(1,r).

f08kge.2 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08kgc

10:

11:

12:

13:

6

tau[dim| — const double Input
Note: the dimension, dim, of the array tau must be at least max(1, min(r, k)).

On entry: further details of the elementary reflectors, as returned by nag dgebrd (f08kec) in its
parameter tauq if vect = Nag ApplyQ, or in its parameter taup if vect = Nag_ApplyP.

c[dim] — double Input/Output

Note: the dimension, dim, of the array ¢ must be at least max(l,pde x n) when
order = Nag_ColMajor and at least max(1, pdc x m) when order = Nag_RowMajor.

If order = Nag_ColMajor, the (i, j)th element of the matrix C is stored in ¢[(j — 1) x pdc + ¢ — 1] and
if order = Nag_RowMajor, the (i,j)th element of the matrix C' is stored in ¢[(i — 1) x pde + j — 1].

On entry: the matrix C.
On exit: ¢ is overwritten by QC' or QTC’ or C'Q or C’QT or PC or PI'C or CP or CPT as specified

by vect, side and trans.
pdc — Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:
if order = Nag_ColMajor, pdec > max(1, m);
if order = Nag_RowMajor, pdc > max(1,n).
fail — NagError * Output

The NAG error parameter (see the Essential Introduction).

Error Indicators and Warnings

NE_INT

On entry, m = (value).
Constraint: m > 0.

On entry, n = (value).
Constraint: n > 0.

On entry, k = (value).
Constraint: k > 0.

On entry, pda = (value).
Constraint: pda > 0.

On entry, pde = (value).
Constraint: pde > 0.

NE_INT 2

On entry, pde = (value), m = (value).
Constraint: pde > max(1, m).

On entry, pde = (value), n = (value).
Constraint: pde > max(1,n).

NE_ENUM_INT 2

On entry, vect = (value), k = (value), pda = (value).
Constraint: if vect = Nag_ApplyQ, pda > max(1,7);
if vect = Nag_ApplyP, pda > max(1, min(r,k)).

[NP3645/7] f08kge.3

fO8kgce NAG C Library Manual

On entry, vect = (value), k = (value), pda = (value).

Constraint: if vect = Nag_ApplyQ, pda > max(1, min(r,Kk));

if vect = Nag_ApplyP, pda > max(1,r).
NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter (value) had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix £ such that
1E, = O()ICll,,

where ¢ is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately

if side = Nag_LeftSide and m > k; 2nk(2m — k),
if side = Nag_RightSide and n > k; 2mk(2n — k),
if side = Nag_LeftSide and m < k; 2m’n,

if side = Nag_RightSide and n < k; 2mp?

>

where k is the value of the parameter k.

The complex analogue of this function is nag zunmbr (fO8kuc).

9 Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a
matrix A may be preceded by a QR or L(Q) factorization of A.

In the first example, m > n, and

-0.57 —-1.28 -0.39 0.25
—-1.93 1.08 —-031 -2.14
230 024 040 -0.35
—1.93 0.64 —0.66 0.08
0.15 030 0.15 -2.13
—0.02 1.03 —-143 0.50

A:

The function first performs a QR factorization of A as A = (Q,R and then reduces the factor R to
bidiagonal form B: R = QbBPT. Finally it forms @, and calls nag_dormbr (f08kgc) to form @ = Q,Q,,.

In the second example, m < n, and

—5.42 328 —-3.68 027 2.06 046
A - —-1.65 —-340 -320 -1.03 —4.06 -0.01
| —0.37 2.35 1.90 431 -1.76 1.13

—-3.15 —0.11 1.99 -2.70 026 4.0

The function first performs an LQ factorization of A as A = LP! and then reduces the factor L to

f08kgc.4 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

f08kgc

bidiagonal form B: L = QBPbT. Finally it forms P%,F and calls nag_dormbr (fO08kgc) to form PT = P;;rPaT.

9.1

nag_dormbr

Program Text

(f08kgc) Example Program.

* Copyright 2001 Numerical Algorithms Group.

* Mark 7,

*/

#include
#include
#include
#include
#include

2001.

<stdio.h>
<nag.h>
<nag_stdlib.h>
<nagf08.h>
<nagx04.h>

int main(void)

{

/* Scalars */
Integer i, ic, j, m,
Integer d_len, e_len,
Integer exit_status=0;
NagError fail;
Nag_OrderType order;

/* Arrays */
double *a=0,

n, pda, pdpt, pdu;

tau_len, taug_len, taup_len;

*d=0, #*e=0, *pt=0, *tau=0, *taup=0, *taug=0, *u=0;

#ifdef NAG_COLUMN_MAJOR

#define A(I,J) al(J-1)*pda + I - 1]
#define U(I,J) ul(J-1)*pdu + I - 1]
#define PT(I,J) ptl[(J-1)*pdpt + I - 1]
order = Nag_ColMajor;

#else

#define A(I,J) al(I-1)*pda + T - 1]
#define U(I,J) ul(I-1)*pdu + J - 1]
#define PT(I,J) ptl[(I-1)*pdpt + J - 1]

order = Nag_RowMajor;

#endif

INIT_FAIL(fail);
Vprintf ("f08kgc Example Program Results\n");
/* Skip heading
Vscanf ("%* ["\n]
for (ic = 1; ic

{

in data file */
") ;
<= 2; ++ic)

Vscanf ("$1d%1d%*x["\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR

pda = m;

pdu = m;

pdpt = n;

taup_len = n;

tauq_len = nj;

tau_len = n;

d_len = n;

e_len = n-1;
#else

pda = n;

pdu = m;

pdpt = nj;

taup_len = n;

tauqg_len = n;

tau_len = n;

d_len = n;

e_len = n-1;
#endif

/* Allocate memory */
[NP3645/7]

fO08kgc.5

fO8kgce NAG C Library Manual

if (

(a NAG_ALLOC(m * n, double)) ||

(d = NAG_ALLOC(d_len, double)) ||

(e = NAG_ALLOC(e_len, double)) ||

! (pt = NAG_ALLOC(n * n, double)) ||
(tau = NAG_ALLOC(tau_len, double))
(taup = NAG_ALLOC(taup_len, double)
(taug = NAG_ALLOC(tauqg_len, double)
(u = NAG_ALLOC(m * m, double)))

|
) 1
) 1

{
Vprintf ("Allocation failure\n");
exit_status = -1;
goto END;
¥
/* Read A from data file */
for (i = 1; i <= m; ++1i)
{
for (j = 1; j <= n; ++3)
Vscanf ("$1f", &A(i,3));
¥
Vscanf ("sx["\n] ");
if (m >= n)
{
/* Compute the QR factorization of A =*/
f08aec(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Copy A to U =%/
for (i = 1; 1 <= m; ++1)
{
for (j = 1; j <= MIN(i,n); ++j)
U(llj) = A(llj);
}

/* Form Q explicitly, storing the result in U */
f08afc(order, m, m, n, u, pdu, tau, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("order=%d\n", order);
Vprintf ("Error from fO08afc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Copy R to PT (used as workspace) *x/
for (i = 1; i <= n; ++1i)
{
for (jJ = 1i; j <= n; ++3)
PT(i,) = A(i,]);
}
/* Set the strictly lower triangular part of R to zero */
for (i = 2; 1 <= n; ++1)
{
for (j = 1; j <= MIN(i-1,n-1); ++73)
PT(i,j) = 0.0;
}
/* Bidiagonalize R */
fO8kec(order, n, n, pt, pdpt, 4, e, tauq, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO08kec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Update Q, storing the result in U =%/
f08kgc (order, Nag_FormQ, Nag_RightSide, Nag_NoTrans,
m, n, n, pt, pdpt, tauq, u, pdu, &fail);
if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08kgc.\n%s\n", fail.message) ;

08kge.6 [NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK)

exit_status = 1;
goto END;
¥
/* Print bidiagonal form and matrix Q =*/
Vprintf ("\nExample 1: bidiagonal matrix B\nDiagonal\n");
for (i = 1; i <= n; ++i)
Vprintf ("%8.4f%s", d[i-1], i%8==0 2?"\n":" ");
Vprintf ("\nSuper-diagonal\n") ;
for (i =1; i <= n - 1; ++1)
Vprintf ("%8.4f%s", e[i-1], 1i%8
Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,
m, n, u, pdu, "Example 1: matrix Q", 0, &fail);

=0 ?Il\nll:" II);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from x0O4cac.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
}
else
{

/* Compute the LQ factorization of A =*/
f08ahc(order, m, n, a, pda, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ahc.\n%s\n", fail.message);
exit_status = 1;
goto END;
}
/* Copy A to PT */
for (i = 1; 1 <= m; ++1)
{

for (j = 1i; j <= n; ++3)
PT(i,3) = A(i,3);
}
/* Form Q explicitly, storing the result in PT =*/
f08ajc(order, n, n, m, pt, pdpt, tau, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08ajc.\n%s\n", fail.message);
exit_status = 1;
goto END;
3
/* Copy L to U (used as workspace) */
for (i = 1; i <= m; ++1i)
{
for (jJ = 1; j <= 1i; ++3)
U(i,j) = A(i,3);
3

/* Set the strictly upper triangular part of L to zero x/
for (i = 1; i <= m-1; ++1)

{

for (3 = i+l; j <= m; ++3j)
U(i,j) = 0.0;

3
/* Bidiagonalize L */
f08kec(order, m, m, u, pdu, d, e, tauq, taup, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from fO8kec.\n%s\n", fail.message);
exit_status = 1;
goto END;
3

/* Update P**T, storing the result in PT */
f08kgc(order, Nag_FormP, Nag_LeftSide, Nag_Trans,
m, n, m, u, pdu, taup, pt, pdpt, &fail);

if (fail.code != NE_NOERROR)
{
Vprintf ("Error from f08kgc.\n%s\n", fail.message);
exit_status = 1;

[NP3645/7]

f08kgc

fO08kgc.7

fO8kgc

goto END;

}

NAG C Library Manual

/* Print bidiagonal form and matrix P**T %/
Vprintf ("\nExample 2: bidiagonal matrix B\n%s\n",
"Diagonal");

for (i = 1;

i <= m;

++1)

Vprintf ("%8.4f%s", d[i
Vprintf ("\nSuper-diagonal\n") ;

for (i = 1;

Vprintf ("%8.4f%s",

i <=m

Vprintf ("\n\n") ;
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, pt, pdpt,

if (fail.code != NE_NOERROR)

Vprintf ("Error from x04cac.\n%s\n",

- 1;
eli

’

{
exit_status = 1;
goto END;
}
¥
END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(4);
if (e) NAG_FREE(e);
if (pt) NAG_FREE (pt);
if (tau) NAG_FREE(tau) ;
if (taup) NAG_FREE (taup) ;
if (tauqg) NAG_FREE (tauq) ;
if (u) NAG_FREE (u);
}

return exit_status;

9.2 Program Data

f08kgc Example Program Data

6 4
-0.57 -1.28 -0.39
-1.93 1.08 -0.31
2.30 0.24 0.40
-1.93 0.64 -0.66
0.15 0.30 0.15
-0.02 1.03 -1.43
4 6

-5.42 3.28 -3.68
-1.65 -3.40 -3.20
-0.37 2.35 1.90
-3.15 -0.11 1.99

9.3 Program Results

0.25
-2.14
-0.35

0.08
-2.13

0.50

0.27
-1.03
4.31
-2.70

2.06
-4.06
-1.76

0.26

f08kgc Example Program Results

Example 1: bidiagonal matrix B

Diagonal

3.6177 -2.4161 1.

Super-diagonal

1.2587 -1.5262 1.

Example 1: matrix Q

1 2
1 -0.1576 -0.2690
2 -0.5335 0.5311
3 0.6358 0.3495
4 -0.5335 0.0035
5 0.0415 0.5572
6 -0.0055 0.4614

Example 2: bidiagonal

J08kgc.8

9213 -

1895

3
0.2612
-0.2922
-0.0250
0.1537
-0.2917
0.8585

matrix

1.426

-0.
-0.

-0.

B

_l]’

++1)
_1] ’

0.
-0.
1.
.50

5

.8513
.0184

0210
2592

.4523

0532

i%8==O ?u\nu:" ");

i%8==0 ?"\n":

46
01
13

:Values

:End of
:Values

:End of

" u);

fail.message);

of M and N,

matrix A
of M and N,

matrix A

"Example 2: matrix P**T", 0, &fail);

Example 1

Example 2

[NP3645/7]

f08 — Least-squares and Eigenvalue Problems (LAPACK) f08kgc
Diagonal

-7.7724 6.1573 -6.0576 5.7933

Super-diagonal

1.1926 0.5734 -1.9143
Example 2: matrix P**T
1 2 3 4 5 6

1 -0.7104 0.4299 -0.4824 0.0354 0.2700 0.0603

2 0.3583 0.1382 -0.4110 0.4044 0.0951 -0.7148

3 -0.0507 0.4244 0.3795 0.7402 -0.2773 0.2203

4 0.2442 0.4016 0.4158 0.1354 0.7666 -0.0137
[NP3645/7] f08kgc.9 (last)

	f08kgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	side
	trans
	m
	n
	k
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

