
NAG C Library Function Document

nag_dormbr (f08kgc)

1 Purpose

nag_dormbr (f08kgc) multiplies an arbitrary real matrix C by one of the real orthogonal matrices Q or P
which were determined by nag_dgebrd (f08kec) when reducing a real matrix to bidiagonal form.

2 Specification

void nag_dormbr (Nag_OrderType order, Nag_VectType vect, Nag_SideType side,
Nag_TransType trans, Integer m, Integer n, Integer k, const double a[],
Integer pda, const double tau[], double c[], Integer pdc, NagError *fail)

3 Description

nag_dormbr (f08kgc) is intended to be used after a call to nag_dgebrd (f08kec), which reduces a real

rectangular matrix A to bidiagonal form B by an orthogonal transformation: A ¼ QBPT . nag_dgebrd

(f08kec) represents the matrices Q and PT as products of elementary reflectors.

This function may be used to form one of the matrix products

QC; QTC; CQ; CQT ; PC; PTC; CP or CPT ;

overwriting the result on C (which may be any real rectangular matrix).

4 References

Golub G H and Van Loan C F (1996) Matrix Computations (3rd Edition) Johns Hopkins University Press,
Baltimore

5 Parameters

Note: in the descriptions below, r denotes the order of Q or PT : if side ¼ Nag LeftSide, r ¼ m and if

side ¼ Nag RightSide, r ¼ n.

1: order – Nag_OrderType Input

On entry: the order parameter specifies the two-dimensional storage scheme being used, i.e., row-
major ordering or column-major ordering. C language defined storage is specified by
order ¼ Nag RowMajor. See Section 2.2.1.4 of the Essential Introduction for a more detailed
explanation of the use of this parameter.

Constraint: order ¼ Nag RowMajor or Nag ColMajor.

2: vect – Nag_VectType Input

On entry: indicates whether Q or QT or P or PT is to be applied to C as follows:

if vect ¼ Nag ApplyQ, Q or QT is applied to C;

if vect ¼ Nag ApplyP, P or PT is applied to C.

Constraint: vect ¼ Nag ApplyQ or Nag ApplyP.

3: side – Nag_SideType Input

On entry: indicates how Q or QT or P or PT is to be applied to C as follows:

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kgc

[NP3645/7] f08kgc.1

if side ¼ Nag LeftSide, Q or QT or P or PT is applied to C from the left;

if side ¼ Nag RightSide, Q or QT or P or PT is applied to C from the right.

Constraint: side ¼ Nag LeftSide or Nag RightSide.

4: trans – Nag_TransType Input

On entry: indicates whether Q or P or QT or PT is to be applied to C as follows:

if trans ¼ Nag NoTrans, Q or P is applied to C;

if trans ¼ Nag Trans, QT or PT is applied to C.

Constraint: trans ¼ Nag NoTrans or Nag Trans.

5: m – Integer Input

On entry: mC , the number of rows of the matrix C.

Constraint: m � 0.

6: n – Integer Input

On entry: nC , the number of columns of the matrix C.

Constraint: n � 0.

7: k – Integer Input

On entry: if vect ¼ Nag ApplyQ, the number of columns in the original matrix A; if
vect ¼ Nag ApplyP, the number of rows in the original matrix A.

Constraint: k � 0.

8: a½dim� – double Input/Output

Note: the dimension, dim, of the array a must be at least

maxð1; pda�maxð1;minðr; kÞÞÞ when vect ¼ Nag ApplyQ and order ¼ Nag ColMajor;

maxð1; pda� rÞ when vect ¼ Nag ApplyQ and order ¼ Nag RowMajor;

maxð1; pda� rÞ when vect ¼ Nag ApplyP and order ¼ Nag ColMajor;

maxð1; pda�minðr; kÞÞÞ when vect ¼ Nag ApplyP and order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix A is stored in a½ðj� 1Þ � pdaþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix A is stored in a½ði� 1Þ � pdaþ j� 1�.
On entry: details of the vectors which define the elementary reflectors, as returned by nag_dgebrd
(f08kec).

On exit: used as internal workspace prior to being restored and hence is unchanged.

9: pda – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array a.

Constraints:

if order ¼ Nag ColMajor,
if vect ¼ Nag ApplyQ, pda � maxð1; rÞ;
if vect ¼ Nag ApplyP, pda � maxð1;minðr; kÞÞ;

if order ¼ Nag RowMajor,
if vect ¼ Nag ApplyQ, pda � maxð1;minðr; kÞÞ;
if vect ¼ Nag ApplyP, pda � maxð1; rÞ.

f08kgc NAG C Library Manual

f08kgc.2 [NP3645/7]

10: tau½dim� – const double Input

Note: the dimension, dim, of the array tau must be at least maxð1;minðr; kÞÞ.
On entry: further details of the elementary reflectors, as returned by nag_dgebrd (f08kec) in its
parameter tauq if vect ¼ Nag ApplyQ, or in its parameter taup if vect ¼ Nag ApplyP.

11: c½dim� – double Input/Output

Note: the dimension, dim, of the array c must be at least maxð1; pdc� nÞ when
order ¼ Nag ColMajor and at least maxð1; pdc�mÞ when order ¼ Nag RowMajor.

If order ¼ Nag ColMajor, the ði; jÞth element of the matrix C is stored in c½ðj� 1Þ � pdcþ i� 1� and
if order ¼ Nag RowMajor, the ði; jÞth element of the matrix C is stored in c½ði� 1Þ � pdcþ j� 1�.
On entry: the matrix C.

On exit: c is overwritten by QC or QTC or CQ or CQT or PC or PTC or CP or CPT as specified
by vect, side and trans.

12: pdc – Integer Input

On entry: the stride separating matrix row or column elements (depending on the value of order) in
the array c.

Constraints:

if order ¼ Nag ColMajor, pdc � maxð1;mÞ;
if order ¼ Nag RowMajor, pdc � maxð1; nÞ.

13: fail – NagError * Output

The NAG error parameter (see the Essential Introduction).

6 Error Indicators and Warnings

NE_INT

On entry, m = hvaluei.
Constraint: m � 0.

On entry, n = hvaluei.
Constraint: n � 0.

On entry, k = hvaluei.
Constraint: k � 0.

On entry, pda ¼ hvaluei.
Constraint: pda > 0.

On entry, pdc ¼ hvaluei.
Constraint: pdc > 0.

NE_INT_2

On entry, pdc ¼ hvaluei, m ¼ hvaluei.
Constraint: pdc � maxð1;mÞ.
On entry, pdc ¼ hvaluei, n ¼ hvaluei.
Constraint: pdc � maxð1; nÞ.

NE_ENUM_INT_2

On entry, vect ¼ hvaluei, k ¼ hvaluei, pda ¼ hvaluei.
Constraint: if vect ¼ Nag ApplyQ, pda � maxð1; rÞ;
if vect ¼ Nag ApplyP, pda � maxð1;minðr; kÞÞ.

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kgc

[NP3645/7] f08kgc.3

On entry, vect ¼ hvaluei, k ¼ hvaluei, pda ¼ hvaluei.
Constraint: if vect ¼ Nag ApplyQ, pda � maxð1;minðr; kÞÞ;
if vect ¼ Nag ApplyP, pda � maxð1; rÞ.

NE_ALLOC_FAIL

Memory allocation failed.

NE_BAD_PARAM

On entry, parameter hvaluei had an illegal value.

NE_INTERNAL_ERROR

An internal error has occurred in this function. Check the function call and any array sizes. If the
call is correct then please consult NAG for assistance.

7 Accuracy

The computed result differs from the exact result by a matrix E such that

kEk2 ¼ Oð�ÞkCk2;

where � is the machine precision.

8 Further Comments

The total number of floating-point operations is approximately

if side ¼ Nag LeftSide and m � k; 2nkð2m� kÞ,
if side ¼ Nag RightSide and n � k; 2mkð2n� kÞ,
if side ¼ Nag LeftSide and m < k; 2m2n,
if side ¼ Nag RightSide and n < k; 2mn2,

where k is the value of the parameter k.

The complex analogue of this function is nag_zunmbr (f08kuc).

9 Example

For this function two examples are presented. Both illustrate how the reduction to bidiagonal form of a
matrix A may be preceded by a QR or LQ factorization of A.

In the first example, m > n, and

A ¼

�0:57 �1:28 �0:39 0:25
�1:93 1:08 �0:31 �2:14
2:30 0:24 0:40 �0:35

�1:93 0:64 �0:66 0:08
0:15 0:30 0:15 �2:13

�0:02 1:03 �1:43 0:50

1
CCCCCCA

0
BBBBBB@

:

The function first performs a QR factorization of A as A ¼ QaR and then reduces the factor R to

bidiagonal form B: R ¼ QbBP
T . Finally it forms Qa and calls nag_dormbr (f08kgc) to form Q ¼ QaQb.

In the second example, m < n, and

A ¼

�5:42 3:28 �3:68 0:27 2:06 0:46
�1:65 �3:40 �3:20 �1:03 �4:06 �0:01
�0:37 2:35 1:90 4:31 �1:76 1:13
�3:15 �0:11 1:99 �2:70 0:26 4:50

1
CCA

0
BB@ :

The function first performs an LQ factorization of A as A ¼ LPT
a and then reduces the factor L to

f08kgc NAG C Library Manual

f08kgc.4 [NP3645/7]

bidiagonal form B: L ¼ QBPT
b . Finally it forms PT

b and calls nag_dormbr (f08kgc) to form PT ¼ PT
b P

T
a .

9.1 Program Text

/* nag_dormbr (f08kgc) Example Program.
*
* Copyright 2001 Numerical Algorithms Group.
*
* Mark 7, 2001.
*/

#include <stdio.h>
#include <nag.h>
#include <nag_stdlib.h>
#include <nagf08.h>
#include <nagx04.h>

int main(void)
{

/* Scalars */
Integer i, ic, j, m, n, pda, pdpt, pdu;
Integer d_len, e_len, tau_len, tauq_len, taup_len;
Integer exit_status=0;
NagError fail;
Nag_OrderType order;
/* Arrays */
double *a=0, *d=0, *e=0, *pt=0, *tau=0, *taup=0, *tauq=0, *u=0;

#ifdef NAG_COLUMN_MAJOR
#define A(I,J) a[(J-1)*pda + I - 1]
#define U(I,J) u[(J-1)*pdu + I - 1]
#define PT(I,J) pt[(J-1)*pdpt + I - 1]

order = Nag_ColMajor;
#else
#define A(I,J) a[(I-1)*pda + J - 1]
#define U(I,J) u[(I-1)*pdu + J - 1]
#define PT(I,J) pt[(I-1)*pdpt + J - 1]

order = Nag_RowMajor;
#endif

INIT_FAIL(fail);
Vprintf("f08kgc Example Program Results\n");

/* Skip heading in data file */
Vscanf("%*[^\n] ");
for (ic = 1; ic <= 2; ++ic)

{
Vscanf("%ld%ld%*[^\n] ", &m, &n);

#ifdef NAG_COLUMN_MAJOR
pda = m;
pdu = m;
pdpt = n;
taup_len = n;
tauq_len = n;
tau_len = n;
d_len = n;
e_len = n-1;

#else
pda = n;
pdu = m;
pdpt = n;
taup_len = n;
tauq_len = n;
tau_len = n;
d_len = n;
e_len = n-1;

#endif

/* Allocate memory */

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kgc

[NP3645/7] f08kgc.5

if (!(a = NAG_ALLOC(m * n, double)) ||
!(d = NAG_ALLOC(d_len, double)) ||
!(e = NAG_ALLOC(e_len, double)) ||
!(pt = NAG_ALLOC(n * n, double)) ||
!(tau = NAG_ALLOC(tau_len, double)) ||
!(taup = NAG_ALLOC(taup_len, double)) ||
!(tauq = NAG_ALLOC(tauq_len, double)) ||
!(u = NAG_ALLOC(m * m, double)))

{
Vprintf("Allocation failure\n");
exit_status = -1;
goto END;

}
/* Read A from data file */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= n; ++j)

Vscanf("%lf", &A(i,j));
}

Vscanf("%*[^\n] ");
if (m >= n)

{
/* Compute the QR factorization of A */
f08aec(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08aec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy A to U */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= MIN(i,n); ++j)

U(i,j) = A(i,j);
}

/* Form Q explicitly, storing the result in U */
f08afc(order, m, m, n, u, pdu, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("order=%d\n", order);
Vprintf("Error from f08afc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy R to PT (used as workspace) */
for (i = 1; i <= n; ++i)

{
for (j = i; j <= n; ++j)

PT(i,j) = A(i,j);
}

/* Set the strictly lower triangular part of R to zero */
for (i = 2; i <= n; ++i)

{
for (j = 1; j <= MIN(i-1,n-1); ++j)

PT(i,j) = 0.0;
}

/* Bidiagonalize R */
f08kec(order, n, n, pt, pdpt, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Update Q, storing the result in U */
f08kgc(order, Nag_FormQ, Nag_RightSide, Nag_NoTrans,

m, n, n, pt, pdpt, tauq, u, pdu, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kgc.\n%s\n", fail.message);

f08kgc NAG C Library Manual

f08kgc.6 [NP3645/7]

exit_status = 1;
goto END;

}
/* Print bidiagonal form and matrix Q */
Vprintf("\nExample 1: bidiagonal matrix B\nDiagonal\n");
for (i = 1; i <= n; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= n - 1; ++i)

Vprintf("%8.4f%s", e[i-1], i%8 == 0 ?"\n":" ");
Vprintf("\n\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, u, pdu, "Example 1: matrix Q", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

else
{

/* Compute the LQ factorization of A */
f08ahc(order, m, n, a, pda, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ahc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy A to PT */
for (i = 1; i <= m; ++i)

{
for (j = i; j <= n; ++j)

PT(i,j) = A(i,j);
}

/* Form Q explicitly, storing the result in PT */
f08ajc(order, n, n, m, pt, pdpt, tau, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08ajc.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Copy L to U (used as workspace) */
for (i = 1; i <= m; ++i)

{
for (j = 1; j <= i; ++j)

U(i,j) = A(i,j);
}

/* Set the strictly upper triangular part of L to zero */
for (i = 1; i <= m-1; ++i)

{
for (j = i+1; j <= m; ++j)

U(i,j) = 0.0;
}

/* Bidiagonalize L */
f08kec(order, m, m, u, pdu, d, e, tauq, taup, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kec.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
/* Update P**T, storing the result in PT */
f08kgc(order, Nag_FormP, Nag_LeftSide, Nag_Trans,

m, n, m, u, pdu, taup, pt, pdpt, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from f08kgc.\n%s\n", fail.message);
exit_status = 1;

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kgc

[NP3645/7] f08kgc.7

goto END;
}

/* Print bidiagonal form and matrix P**T */
Vprintf("\nExample 2: bidiagonal matrix B\n%s\n",

"Diagonal");
for (i = 1; i <= m; ++i)

Vprintf("%8.4f%s", d[i-1], i%8==0 ?"\n":" ");
Vprintf("\nSuper-diagonal\n");
for (i = 1; i <= m - 1; ++i)

Vprintf("%8.4f%s", e[i-1], i%8==0 ?"\n":" ");
Vprintf("\n\n");
x04cac(order, Nag_GeneralMatrix, Nag_NonUnitDiag,

m, n, pt, pdpt, "Example 2: matrix P**T", 0, &fail);
if (fail.code != NE_NOERROR)

{
Vprintf("Error from x04cac.\n%s\n", fail.message);
exit_status = 1;
goto END;

}
}

END:
if (a) NAG_FREE(a);
if (d) NAG_FREE(d);
if (e) NAG_FREE(e);
if (pt) NAG_FREE(pt);
if (tau) NAG_FREE(tau);
if (taup) NAG_FREE(taup);
if (tauq) NAG_FREE(tauq);
if (u) NAG_FREE(u);

}
return exit_status;

}

9.2 Program Data

f08kgc Example Program Data
6 4 :Values of M and N, Example 1

-0.57 -1.28 -0.39 0.25
-1.93 1.08 -0.31 -2.14
2.30 0.24 0.40 -0.35

-1.93 0.64 -0.66 0.08
0.15 0.30 0.15 -2.13

-0.02 1.03 -1.43 0.50 :End of matrix A
4 6 :Values of M and N, Example 2

-5.42 3.28 -3.68 0.27 2.06 0.46
-1.65 -3.40 -3.20 -1.03 -4.06 -0.01
-0.37 2.35 1.90 4.31 -1.76 1.13
-3.15 -0.11 1.99 -2.70 0.26 4.50 :End of matrix A

9.3 Program Results

f08kgc Example Program Results

Example 1: bidiagonal matrix B
Diagonal

3.6177 -2.4161 1.9213 -1.4265
Super-diagonal

1.2587 -1.5262 1.1895

Example 1: matrix Q
1 2 3 4

1 -0.1576 -0.2690 0.2612 0.8513
2 -0.5335 0.5311 -0.2922 0.0184
3 0.6358 0.3495 -0.0250 -0.0210
4 -0.5335 0.0035 0.1537 -0.2592
5 0.0415 0.5572 -0.2917 0.4523
6 -0.0055 0.4614 0.8585 -0.0532

Example 2: bidiagonal matrix B

f08kgc NAG C Library Manual

f08kgc.8 [NP3645/7]

Diagonal
-7.7724 6.1573 -6.0576 5.7933

Super-diagonal
1.1926 0.5734 -1.9143

Example 2: matrix P**T
1 2 3 4 5 6

1 -0.7104 0.4299 -0.4824 0.0354 0.2700 0.0603
2 0.3583 0.1382 -0.4110 0.4044 0.0951 -0.7148
3 -0.0507 0.4244 0.3795 0.7402 -0.2773 0.2203
4 0.2442 0.4016 0.4158 -0.1354 0.7666 -0.0137

f08 – Least-squares and Eigenvalue Problems (LAPACK) f08kgc

[NP3645/7] f08kgc.9 (last)

	f08kgc
	1 Purpose
	2 Specification
	3 Description
	4 References
	5 Parameters
	order
	vect
	side
	trans
	m
	n
	k
	a
	pda
	tau
	c
	pdc
	fail

	6 Error Indicators and Warnings
	NE_INT
	NE_INT_2
	NE_ENUM_INT_2
	NE_ALLOC_FAIL
	NE_BAD_PARAM
	NE_INTERNAL_ERROR

	7 Accuracy
	8 Further Comments
	9 Example
	9.1 Program Text
	9.2 Program Data
	9.3 Program Results

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

